The Guide to the Lava Diagram

Hi everybody:

/As you probably noficed on onb\em\

Sef Nine - and on the practice final
exams — we love asking gquestions about
*The Lava Diagram.,”

— \//

—

N—

The Lava Diagram is this Venn diagram
showing the relationships between the
reqular, decidable, and recognizable

languages.

~

7~ (In case you're wondering, this isn T N\

really called *The Lava Diagram.” Thaf's

just a fun name some students came up
with a while back, 1 liked it, so I've

N kept using it eve%/

Usually, we'll ask a question ot the torm
“fake this group of lanquages and place
each one of them into the diagram in the

roper place,”
" prop 1%

~

@ -

Thns guestion is designed 1o test %ow
infuition for what the different classes
of languages mean. The first time you
see a problem like This, it can be fricky:

N—

CODD

7 However, there are a bunch of useful
infuitions That can help guide you while
working on these problems, We'll go and
falk about them by working through These

" four \amquaqes{//

Li={(M)| MisaTM and |#(M)]
L>={{(M)|MisaTM and |[#(M)| =
ILz3={ab"|ne€Nandn> 1000}
Ls={ab"|n€ Nandn <1000 }

IV

Let's start by looking at this language
L1 and seeing where it should go.

Li={{(M)|MisaTM and |(M)| = 2 }

@ -

Theve are a couple of different sTvaTeques
you can use To work Through these
problems, but the one we find fhe most
useful is to start from the outside

N and work ime/
Li={{(M)|MisaTM and |(M)| = 2 }

ALL

——

™~

That is, we've going o sfart off
with L1 in The ALL section, then try
fo see how far down we can push it

N—

into The Lava Diagram.,

Li={{(M)|MisaTM and |(M)| = 2 }

\//

®l1(?)
. R RE ALL
~ N

The very first question we should ask
ourselves, therefore, is whether this
language belongs to RE.

~— \//
Li={{(M)|MisaTM and |(M)| = 2 }

N—

®l1(?)
. R RE ALL
~ N

So what exactly is the class RE?

Li={{(M)|MisaTM and |(M)| = 2 }

~J

®l1(?)
. R RE ALL
~ N

When we first defined RE, we said fhat
it was fhe class of all the recognizable
languages.

~— \//
Li={{(M)|MisaTM and |(M)| = 2 }

®l1(?)
. R RE ALL
~ N

This means That we could try fo think about
RE as ‘fhe class of problems with
recognizers,”

~— \//
Li={{(M)|MisaTM and |(M)| = 2 }

®l1(?)
. R RE ALL
~ TN

However, later on, we saw a different
definition of RE, which I think is actually
a lot more useful here,

~— \//
Li={{(M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

®l1(?)
. R RE ALL

~

N—

Specifically, we saw that RE is the class

—

of languages that have verifiers,

~J

Li={{(M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

®l1(?)
. R RE ALL

~ N
It you think back to what a verifier for

a language is supposed 1o do, at a
high level, it's veally an *answer checker,”

~— \//
Li={{(M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

®l1(?)
. R RE ALL

Specifically, a verifier is supposed to take

in a string and a certificate, fhen see

whether the cerfificate proves whefher

\ The string is in The\a{uaqe)/
Li={{(M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

/Imﬂna’(sense, you can think of The?

languages This way: they've the languages
where, for any string in the language,
There's some way to prove that the string

\ is indeed in the \a“@“&//
Li={{(M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

*L.(?)
. ALL

Twms out, this provides an amazmq\\

good infuifion for the RE languages. A
language is in RE if and only if, whenever
you have a string in the language, there's

@e way To prove i1's W
Li={{(M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

We've going to use This intuition a ton)
when working through these problems,
1T's definitely worth making a note of

| This Techmi%{//
Li={{(M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could

you prove that w € L?

®l1(?)
. R RE ALL

~

N—

So let's go focus our atfention fo fhe
parficular language L1 we have right

—

NOW o

Li={{(M)|MisaTM and |(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

~

N—

Imagine you have a sfring in L1, What

—

does that sfring look like?

Li={{(M)|MisaTM and |(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

~

N—

well, according fo the definifion of the
language, any string in L1 must encode

—

a ™™ where |L(M)| = 2.

Li={{M)|MisaTM and |(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

~

N—

—

So what exactly does that mean?

Li={{M)|MisaTM and |(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could

you prove that w € L?

®l1(?)
. R RE ALL

~

N—

well, the language of a T is the sef of

—

strings that i1 accepts.,

Li={{M)|MisaTM and |(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

~

N—

That M accepts at least two strings.

——
So, it 1L(M)] = 2, iT means

Li={{M)|MisaTM and |(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

~

N—

*the language ot TMs that accept at least

—

So we can Think of L1 as

fwo strings.”

Li={{M)|MisaTM and |(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

~ N

With that in mind, let's think about
whether this language is in RE or nof.

~— \//
Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

~

N—

Lef's imagine that we have a random T™
and we are convinced that it accepfs af

—

least Two strings,

Li={{M)|MisaTM and |(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could

you prove that w € L?

®l1(?)
. R RE ALL

~

N—

Is fhere something we could do to prove
That i1 accepts af least Two strings?

—

Li={{M)|MisaTM and |(M)| = 2 }

~J

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

7~ In other words, if we came across N\

someone who was skepfical that the machine
actually accepts at least two strings,
could we convince them that the machine

Li={{M)|MisaTM and |(M)| = 2 }

\dndeed does accept at \W

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

‘ In this case, the answer is yes:

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

*L.(?)
. ALL

If we happened fo know af least Two\

sfrings thal fhe machine accepted, we
could just run the machine on both
those strings and wafch it accept them,

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
. R RE ALL

7~ Anyone who was initially skeptical that N\

our TM accepted at least fwo strings
would definitely be convinced at that point,
They just watched the TM accept af

N— least two sTv{//
Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
R RE ALL
—

—~

So, going off This intfuition, we can be
reasonably confident fhat the language La
is indeed in RE,

Li={{M)|MisaTM and |(M)| = 2 }

= ~J

you prove that w € L?

°L1(?)
ALL

RE: Languages with Verifiers

Given any string w € L, could

possibility that it's also in R or is

outside RE.,
N—

Li={{M)|MisaTM and |(M)| = 2 }

—~~

AT this point we haven't ruled out the

regular, but it's almost cerfainly not

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

°L1(?)
ALL

A\Thouqh The gquestion here was just ?

go and place L1, it's not a bad idea
To think about how we'd actually go
and build a verifier for L1,

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)
R RE ALL

The idea would go something like this,

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)
R RE ALL

We can prove that our TM M accepts
at least fwo sfrings by telling our verifier
whal two sfrings M is going To accept,

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

°L1(?)
ALL

7o ensure that our verifier doesn't go N\
info an infinife loop (remember - verifiers
aren'T allowed fo loopr), we can also
give the verifier The number of sfeps if's

N qoing fTo fake for MQ’?/
Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®Li(?)
ALL
—~

So the verifier would fake in as input
the TM M, two strings w1 and wz, and a
number of steps n, and could run M on

the stings w1 and w2 for up fo n steps.

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

°L1(?)
ALL

If M accepls both wi and wz2 within T?
many steps, then the verifier is convinced
That M definitely accepts at least fwo

strings.
N—

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

7~ 1§ that doesn't happen, the verifier N\

isn't sure of what the answer is, Maybe M
does accept fwo strings and we gave the
verifier the wrong strings, or maybe we

_dave it the wrong muwQT/ey
Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)

R RE ALL

7~ 1f you wanted to write This up as a N\

formal prootf, it's a good exerciser For
now, Though, we're just going to confinue
working Through figuring out where This

\\awwa% goes on the La{DiaQ)am/
Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
R RE ALL

Okay! So al this point we know That
Ll |S |V] REO

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
R RE ALL

The next step is to determine whether
iT's also in class R,

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
R RE ALL

So whal exactly is fhe class R?

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
R RE ALL

Well, we defined it to be the class of
all decidable languages.

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

R: Languages with Deciders

That means that it's the class of all
languages that have deciders.

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

R: Languages with Deciders

You can reason aboul whether a language
belongs 1o class R by thinking about whether
you could build a decider for it,

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

R: Languages with Deciders

There's an alternative perspective that
1 think is a bit easier To use, though.

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

R: Languages with Deciders

On Problem Set Nine, there’s a problem
entfitled *Double Verification,*

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)

R RE ALL

R: Languages with Deciders ~We asked you o prove this statement: N

1f L € Re and T € RE, fthen L € R,

N\ What exactly does w/
Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)

R RE ALL

R: Languages with Deciders 3t L € Re and T € RE, fhen L € RN

From what we've talked about so far,
you probably have a slightly better feel for

__ What it means tor /,Tob\em;\?./
Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)

R RE ALL

R: Languages with Deciders 3t L € Re and T € RE, fhen L € RN

But what exactly does it mean for fhe
complement of L to be in RE?

~— \//
Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)

R RE ALL

7~ 1t L € RE and T € RE, then L € R, ~\

Going off of our proot—based infuition,
if the complement of L is in RE, it means
That given any string w That is not in L,

\here's a way 1o onveﬁ's\m*}”—/
Li={{M)|MisaTM and |(M)| = 2 }

R: Languages with Deciders

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

7~ This turns out o be a greal way of N\
infuifing the class R. A language belongs

) : fo R it if's in RE, and for any string
T XA SIERIEE] T (3 /by COUNE| 0T that isn'1 in the language, there's a way
prove that w ¢ L? !

\To prove iT's not in The\\amua/@y
Li={(M)|MisaTM and |(M)| = 2 }

R: Languages with Deciders

In addition to the RE requirements,

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)

R RE ALL

7~ (Alfhough we only had you prove the N\

forward direction of the implication in fhe

) : I 1d Double Verification problem, furns out
given any string w ¢ L, could you The reverse direction holds as well, This
prove that w ¢ L?

_dives an exact chavao’few
Li={(M)|MisaTM and |(M)| = 2 }

R: Languages with Deciders

In addition to the RE requirements,

you prove that w € L?

®J1(?)

R RE ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

RE: Languages with Verifiers

Given any string w € L, could

~

Now, lef's jump back to our particular

N—

language L1 here and use this

it belongs to class R,

Li={{M)|MisaTM and |(M)| = 2 }

infuition To think aboul whether or notf

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
R RE ALL
®
R: Languages with Deciders ~)
In addition to the RE requirements, So imagine fhat you have some string

given any string w ¢ L, could you That isn't in La,

prove that w ¢ L?

~— \//
Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

R: Languages with Deciders

In other words, imagine you have
™ M where [L(M)| < 2.

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

That means thal M must accept eiﬂ'\ev\

no strings at all or just one string.,

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

(Do you see why?)

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

7~ S0 now the question is the following: N\
if you have a TM that accepts either no

iven any string w ¢ L. could vou sfrings or just one string, could you
?)rove th};t W ¢gL9 ' 4 prove it o someone who was skepTical

N— but homesﬂ\//
Li={(M)|MisaTM and |(M)| = 2 }

R: Languages with Deciders

In addition to the RE requirements,

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

‘ This is going To be a bit tricky,

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)

R RE ALL

7~ 1F you want to convince someone Thal N\

M only accepts al most one string, you

) : need to convince them that out of the
given aIl:‘ly Stl‘liflgL\:\)/ ¢ L, could you infinitely many strings that are out
prove that w :

_There, the T™ accepfswy
Li={(M)|MisaTM and |(M)| = 2 }

R: Languages with Deciders

In addition to the RE requirements,

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J1(?)

R RE ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

As we've seen betore, though, we know
that the only general way to find out what
a ™ will do on a string is To run the
T™ on that string and see what happens,

Li={(M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)

R RE ALL

750 if we want to convince someone thal=N\

a TM doesn't accept infinitely many
different strings, we're out ot luck:

R: Languages with Deciders

In addition to the RE requirements,

given any string w € L, could you '
prove that w ¢ L.? In the general case, we'd have 1o run

N\ The T™ on all Thow--//
Li={(M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l1(?)
R RE ALL
®
R: Languages with Deciders a8 - o)
. and given thal fhere are infinitely
In addition to the RE requirements,

: : many of them, we'll never finish
given any string w ¢ L, could you checking Them all
prove that w ¢ L? ’

~— \//
Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

7~ So, based on the infuition that a N\

R: Languages with Deciders o .
language is in R if we can always

In addition to the RE requirements,

: : prove it when strings aren't in The
LTI 8Ly ST 1 (3 Ly, GOULLE. Fou language, we'd suspect that this language
prove that w ¢ L? /

N is not in R\//
Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

70 actually go and prove this, we could™N

R: Languages with Deciders
guad use some kind of self—reference frick

In addition to the RE requirements,

: . 2 d and build a machine That asks whether it's
?)llifoe\?ee}:?;svzliégﬁg] ¢ L, could you qgoing To accept al least fwo strings,

N then does fhe OQ//
Li={(M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL
®
R: Languages with Deciders ﬁac)(, That's such a good exercise m
In addition to the RE requirements, 4ou should stop reading this and go do it

right now, The Guide fo Self—keference
might help you There,
N—

given any string w ¢ L, could you
prove that w ¢ L?

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

R: Languages with Deciders

So did you go prove thaf yet? 1If nof,
you really should think about doing so.
1t's a greal exercise!

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

So al this point we've got This language
setfled in the right place, I1's in RE,
but iT's not in R,

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL
®
R: Languages with Deciders @ve we move on to The next \amquaqi}
In addition to the RE requirements, I wanfed fo fake a minute to address a

given any string w ¢ L, could you common guestion we gel on problems
prove that w ¢ L? like These,

~— \//
Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

1t you look at the description of The\

language, you can see thal it says
something aboul TMs that accept at least

Two strings.,
N—

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Li={{M)|MisaTM and |(M)| = 2 }

you prove that w € L?

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

RE: Languages with Verifiers

Given any string w € L, could

—~

A lot of people ask - *Isn't it really
easy To build a ™™ that accepts at least

N—

fwo strings? So shouldn't this be
decidable? or even reqular?”

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you

The answer To that question is ‘yes,
‘ and no.,”
prove that w ¢ L?

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you

It is indeed possible fo build a ™
prove that w ¢ L? That accepls at least fwo strings.,
w :

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you

We can do that by just building a ™
that w ¢ L? that accepts everything, for example,
prove atl w r

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

Bt nofice that this problem isn't asking

whether you can build this machine, I1's
a question aboul fhe language of all
T™s with this particular property,

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

—~

In that sense, the question is really asking
*how hard is it fo tell whether a random
T™ actually does accept at least fwo

sTrings?”
N—

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

7~ That question - the question of checking™

R: Languages with Deciders _ .
whether a TM has some behavior - is

In addition to the RE requirements,

) : I 1d fypically much, much harder than the
gleélei?;silggﬁg] 8 ik, GO YO problem of building a ™M with that

N— behaviov-\//
Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

7~ Keep thal in mind going forward - the N\

R: Languages with Deciders
ghad guestion is To defermine whether an

In addition to the RE requirements,

) s ¢ T d arbifrary string is in the language, not
given any string w ¢ L, could you .
ST et S () 10 fo try To find a string That happens fo

N be in The \aWQ%/
Li={(M)|MisaTM and |(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

— ™~

And with that said, let's move on fo
the second language:

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

~— \//
Li={{M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

7~ Before 1 talk about this particular N\

problem, take a few minutes fo fhink
about where you believe this should go in
the Lava Diagram. Once you've done

N That, let's rejoin awolke{fa\k}ly

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L>={{(M)|MisaTM and |(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

~ N

Did you actually go and think about it?

1t notf, you should, Like, seriously, It's
good practice,

= ~J

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L>={{(M)|MisaTM and |(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

ALL

— ™~

Okay! So now you've given i1 your best

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

shot, Let's see where this one goes,

= ~J

L>={{(M)|MisaTM and |(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J> (?)
ALL
®
R: Languages with Deciders As betore, we've going fo start on fhe
In addition to the RE requirementsl OUTSide aV\d move iV\\/\/aYda IV\l‘ha\\l{r, we

won't make any assumptions about where
This parficular language goes.

given any string w ¢ L, could you
prove that w ¢ L?

L>={{(M)|MisaTM and |(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

R: Languages with Deciders

Our first gquestion is to determine whether
this language belongs to RE or nof,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L>={{(M)|MisaTM and |(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

R: Languages with Deciders

To do so, we're going To ask whether,
given a random string in the lanquage, if's
possible o prove it's in the language.

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L>={{(M)|MisaTM and |(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

R: Languages with Deciders

Looking over the definifion of the
language, we see thal This is The language
ot all TMs whose language has size fwo,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L>={(M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

R: Languages with Deciders

This means thaf this is the language of all
TMs thal accept exactly fwo strings,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L>={(M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

R: Languages with Deciders

So now we ask — if had a TM and you knew
for a tact that it accepted exactly fwo
sTrings, could you prove it?

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L>={(M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

This furns out to be a lof harder than
just checking it a TM accepts af least
Two strings.,

L>={{(M)|MisaTM and |(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

7~ To show thal a TM accepts exactly Two N\
sfrings, we need to show that it accepts
at least fwo strings (that's something
we can prove), butl also fhat it doesn't

N accept awﬂhiwqe{/j

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L>={{(M)|MisaTM and |(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

7~ The problem is that to show Thal a TM™N
accepts a parficular set of sfrings and
nothing else, we need fo prove that the

TM doesn't accept any strings outside of

N— that sefo\//

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L>={{(M)|MisaTM and |(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

7~ That in turn would requive us — in The N\

general case - 1o vrun the T on infinitely
many sfrings To see whal happens, since
fhere's no general way fo see what a ™

__ does other than %/

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L>={{(M)|MisaTM and |(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®J>(?)

ALL

750 at least, intuitively, this doesn't seem
like iT's going fo be possible to do.
Even if we know thal TM accepts exactly

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you

prove that w ¢ L.? fwo strings, i1's unclear how we'd prove

N— that to someOV‘e-\//

L>={{(M)|MisaTM and |(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

This gives us some justification to quess
that this language is probably not going
fo be in RE,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L>={{(M)|MisaTM and |(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

So there you have it - this language
is not even in RE,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L>={{(M)|MisaTM and |(M)| =2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

That might seem prefty surprising, given
how similar this language looks to Li,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Li={{M)|MisaTM and |(M)| = 2 }
L>={(M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

7~ 1 chose this particular example N\

R: Languages with Deciders
P because it highlights a key point when

In addition to the RE requirements,

. , thinking about languages: don't try to
given aI;_ly Stniég ‘g] i il COLE O place a language in the diagram just
prove that w ¢ L

N\ based on its oleSCViPQ//
Li={{M)|MisaTM and |(M)| = 2 }

L>={(M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

7~ To figure out where something goes, N\

R: Languages with Deciders
P you need To Think about in terms of

In addition to the RE requirements,

) : I d provability, Limately, iT's this - rather
gﬁf&ﬁiswﬁ? i i, GO Tt than the way it's wriffen - thal makes

N— things havd-\//
Li={{M)|MisaTM and |(M)| = 2 }

L>={(M)|MisaTM and |(M)| = 2 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

With that said, let's go fake a look atf
The next language in our list,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

TEEssels (?)

R: Languages with Deciders

As before, we'll start by placing it
outside of RE and fry To Think about
pushing it as far down as possible,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

*J3 (?)

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

As before, we first ask whether fhis
language happens to be in RE,

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

*J3 (?)

R: Languages with Deciders

So let's imagine we have an
arbifrary string from this language.

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l>
ALL
®
®J3 (?)
R: Languages with Deciders /Tha’(means thal we have a sTvimq\
In addition to the RE requirements, of the torm a'br with at least

2,007 characters in it (at least 1,001 a's

and at least 1,001 b's,)
N—

given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

*J3 (?)

R: Languages with Deciders

So - given that string, could we prove
fo someone that the string was indeed
in The language?

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

®l>
ALL
®
R: Languages with Deciders /Suve! We could just count up the a's,\
In addition to the RE requirements, count up the b's, show That there are

the same number, and show that there's
at least 1,000,

= ~J

given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

Next, let's ask the follow—up question
fo see if Ls is in R, If we had a string
not in fhe language, could we prove it?

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

There are a lot of cases to check if the
sfring ends up not being in The language.

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

1t could not have the tform a"b", or it
could have too few a's and b's in it,
for example,

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

—

However, all of fhose cases are really
easy To check, We either show thal i has
the wrong form or show that it doesn't

N—

"~

have enough characters in i,

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

| | TN
Okay, Things are looking good here:

We know that fhis language is decidable,
As our final sfep, we need fo ask
whether or not it's regular,

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

N—

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

So what exactly makes a language regular?

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

@ave a ton of different oleﬁmﬁomsf\ov

regular languages - they've the languages
of DFAs, NFAs, regexes, and right—

. linear grammars.,

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

But, as with R and RE, I think Theve's\a

much better infuifion o have about the
regular languages thal makes it easier
to see whether something is regular.

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

~Specifically, The reqular languages really ™
correspond fo problems that you can

solve in finite memory, (This is the same
infuition we used fo find nownreqular

__ 'anguages for the first time.)

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

71t you're trying to determine whether ~N\

a decidable language happens to be
reqular, think about how much

information you need to remember

N about the impuTsTvi{//

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

7~ 1t you only need To remember one of N\

finitely many pieces of informafion, then
the language is almost certainly reqular,
even if you can't envision a clean DFA

L= {ah"|n€Nandn > 1000 }

N or regex fok//

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

So let's think about this here, What
information do we need fo keep
Track of?

L= {ah"|n€Nandn > 1000 }

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

—

Fundamentally, we'd have 1o keep frack
of how many a's we've seen, since if
we can't do that, we can't match it

against the wnumber of b's.

L= {ah"|n€Nandn > 1000 }

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

7~ That's a problem: there are infinitely N\
many possible choices for the number of
a's That we'd have to remember, and
we can'l remember which number we've

L= {ah"|n€Nandn > 1000 }

N seen with finifely mam{/ﬂﬂ%!/

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

R: Languages with Deciders

So this gives us The infuition that Ls is
almost cerfainly going to be nonreqular.,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

R: Languages with Deciders

You can formally prove this by using the
Myhill=Nerode theorem. I highly recommend
it - if's good practice:

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

So - what did we learn here?

L= {ah"|n€Nandn > 1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

—~

R: Languages with Deciders We've seen how to use our key infuition

for regular languages - They're languages
you can solve in finite space - fo check
whether something is reqular.

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

L= {ah"|n€Nandn > 1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

R: Languages with Deciders

With all that said and done, letrs move
on 1o our last language here.,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

7~ While normally we've talked about N

sfarfing from the oufside and moving
inward, for this lanquage 1 fhink you can
probably see that this is going o be

Ls={ab*"|n€ Nandn <1000 }

__ decidable, so let's start it there,

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

The gquestion now is whether i1's regular
or not,

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

R: Languages with Deciders

The answer is yes. Here's a number of
different ways o think about why,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>
®/s3

ALL

7~ First, we can think about this from an N\

information perspective, To check whether
a string is in fhis language, we need to
keep Track of how many a's there are

__ 2"d how many b's%/

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

°J>
®Js
ALL
®
R: Languages with Deciders ~ -)
Jout only up to a point, Affer we see
In addition to the RE requirements,

1,001 copies of either character, we know
That the string isn't in the language.

= ~J

given any string w ¢ L, could you
prove that w ¢ L?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

—~

This means That we just need fo remember

how many a's and b's we've seen (within

The limifs) and whether we're still veading
a's or b's,

= ~J

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>
®/s3

ALL

7~ That means we only need a finife amounTN

of information to decide whether a
string is in The language, so using our
infuition for the regular languages, this

N— one willl be veﬁ‘*‘{//

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

Here's another appvoaohwe\oam/’(akejl

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

How many strings are in this language?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

R: Languages with Deciders

There's only 1,001 of them, corresponding
fo all the different choices of n we can

In addition to the RE requirements,
given any string w ¢ L, could you

prove that w ¢ L? make,

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

R: Languages with Deciders

As you proved on Problem Set 7, all
finite languages are regular, Thal means
that this language has To be reqular,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

R: Languages with Deciders

As a final option, we can think abouf fthis
in ferms of DFA or regex design,

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

R: Languages with Deciders

You could imagine building a (huge)
regex for this language:
€ U ab U aabb u aaabbb u . u aweproe

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

Ls={ab*"|n€ Nandn <1000 }

REG: Problems Solvable
with Finite Memory

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

/>

ALL

So thal means that it's going To be
regular,

Ls={ah"|n€Nandn = 1000 } ‘

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

By now we've successtully placed all the
languages in to the Lava Diagram,
Woohoo!

/>

ALL

®/s3
R

Let's do a quick recap of what all of the
different regions mean and how best
To Think about them.

RE: Languages with Verifiers

Given any string w € L, could

you prove that w € L?
- d
®[s
R

7~ First, the RE languages. To check N\
whether a language is RE, ask yourselt
whether, for any string in tThe language,
you could prove to someone else that

N— iT's in The \aw%/

/>

ALL

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

Next, the R languages. If Thal you N
already know your language is in RE, you
can figure oul whether iT's in R by asking
hether, for any string not in the language,

ou can prove if's not in the language.

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

RE: Languages with Verifiers

Given any string w € L, could

you prove that w € L?

®/s3

/>

ALL

R: Languages with Deciders

In addition to the RE requirements,
given any string w ¢ L, could you
prove that w ¢ L?

—

N—

Finallg, the reqular languages., Those are
The ones That you can solve given only

™~

finife resources.,

~J

REG: Problems Solvable
with Finite Memory

Are there are finitely
many cases to check?

R: Languages with Deciders

given any string w ¢ L, could you
prove that w ¢ L?

In addition to the RE requirements,

RE: Languages with Verifiers

Given any string w € L, could
you prove that w € L?

/>

ALL

The more that you learn about fhese
languages, the more intuitions and wnuances
you'll be able to use 1o help guide uyour

N—

™~

search,

Li={(M)|MisaTM and |Z(M)|
L= {(M)| MisaTM and |Z(M)|
ILz3={anb"|n€Nandn> 1000}
Li={ab"|n€ Nandn <1000 }

i1V

2}
2}

~J

REG: Problems Solvable RE: Languages with Verifiers

with Finite Memory

— | Given any string w € L, could
you prove that w € L?

Are there are finitely
many cases to check?

®J]->
®J3
ALL
®
R: Languages with Deciders ~ o)
Hopefully, this gives you a good
In addition to the RE requirements,

sTarfing point for working fhrough
Lava Diagram gquestions. Good luck:

= ~J

given any string w ¢ L, could you
prove that w ¢ L?

Li={(M)|MisaTM and |Z(M)|
L= {(M)| MisaTM and |Z(M)|
ILz3={anb"|n€Nandn> 1000}
Li={ab"|n€ Nandn <1000 }

i1V

2}
2}

—

Hope this helps:

Please feel free fo ask

™~

guestions if you have them,

- N
Did you find this useful? 1f

so, let us know: We can go
and make more guides like fhese,

— —

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154

